A Hybrid Algorithm based on Invasive Weed Optimization and Particle Swarm Optimization for Global Optimization
نویسندگان
چکیده
In this paper, an effective combination of two Metaheuristic algorithms, namely Invasive Weed Optimization and the Particle Swarm Optimization, has been proposed. This hybridization called as HIWOPSO, consists of two main phases of Invasive Weed Optimization (IWO) and Particle Swarm Optimization (PSO). Invasive weed optimization is the natureinspired algorithm which is inspired by colonial behavior of weeds. Particle Swarm Optimization is a swarm base Algorithm that uses the swarm intelligence to guide the solution to the goal. IWO algorithm is the algorithm which is not benefit from swarm intelligence and PSO converges to the local optimums quickly. In order to benefit from swarm intelligence and avoidance from trapping in local solutions, new hybrid algorithm IWO and PSO has been proposed. To obtain the required results, the experiment on a set of benchmark functions was performed and compared with other algorithms. The findings based on the nonparametric tests and statistical analysis showed that HIWOPSO is a more preferable and effective method in solving the highdimensional functions. Keywords—Invasive weed optimization; Particle Swarm Optimization; Global optimization; Hybrid algorithm
منابع مشابه
Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملA Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network
Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...
متن کاملA New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems
Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the par...
متن کاملDiversified Particle Swarm Optimization for Hybrid Flowshop Scheduling
The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...
متن کامل